ONE CASE OF THE EQUILIBRIUM OF A SYSTEM
OF RADIAL CRACKS

E. N, Sher UDC 539.3

The plane-elasticity problem of the equilibrium of a system of uniformly distributed
cracks of equal length intersecting in a single point is considered. The system is
located with concentrated forces applied to the tips of the wedges cut out by the cracks
and acting along the bisectrices of the wedges. An analytical expression is found for
the singularity coefficient of the stress field at the tip of the cracks,

1. The plane-elasticity theory of the equilibrium of a system of uniformly distributed radial cracks
of equal length emerging into a round cavity was considered in {1}, This problem is of interest from the
point of view of the rupture of brittle solids by the explosion of long cylindrical charges. There may be
two kinds of loading — the first in which a constant pressure is applied both to the boundary of the cavity
and to the borders of the cracks, and the second in which a constant pressure is applied to the boundary of
the cavity while the borders of the cracks are stress-free, A numerical solution was given in {1} for the
first mode of loading in the case of one or two cracks,

The limiting case of the problem for an infinitely small radius of the cavity was considered in [2],
in which an analytical solution was given for the equilibrium of a system of uniformly distributed cracks
of equal length intersecting at a single point and loaded with a constant pressure applied to the borders of
the cracks, An approximate analytical solution of this problem was obtained in [3].

In this paper we shall consider the equilibrium of a similar system of cracks loaded with concen-
trated forces applied to the tips of the wedges cut out by the cracks and directed along the bisectrices of
these wedges, This presentation of the problem corresponds to that of [1] for the second mode of loading
in which the crack length is much greater than the radius of the cavity.

Using the Wiener—Hopf method we shall obtain a solution for the paired integral equations derived
in [2], but with different boundary conditions, We shall give an analytical solution for the singularity co-
efficient of the stress field at the tip of the crack,

Let there be n radial cracks of unit length in a thin infinite elastic plate, The angles between neigh~
boring cracks are 27/n. The borders of the cracks are stress-free. To the tips of the wedges formed by
the cracks we apply concentrated forces Q, acting along the bisectrices to the angles of these wedges.

The symmetry of the problem allows us to consider one such wedge on its own, We introduce a polar
coordinate system (r, 8). Let the wedge occupy a region 0<r <, l6] =n/n.

It follows from the symmetry of the problem that

G,p = 0 for j[6]=a/n, O<<r<<o (1-1)
1 =0 for ]0|:::[,")', l<r<00

Here 0pg is the stress-tensor component, and v is the tangential component of the displacement vec~
tor.,

In order to describe the action of the concentrated force applied to the tip of the wedge, let us con~
sider the action of such a force on a free infinite wedge, on the boundaries of which the conditions oy g =0,
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0rg =0 are satisfied for | 8| =n/n. The force Q acts along the 6 =0 axis. The solution of this problem [4]

is described by an Airy function:
W= — [QO0 r~in 0][21, 5 -+ sin 27/ o)™, (1.2)
The values of the tangential displacement at § =r/n are expressed by the equations
‘Ef jgé 1421:1 : Bm 27 " n — sin 23] n}™? .3)
B =Q02/n -sin2a/a] {(1 — W) sin2a/n — (1 —+) % cos 2.1/71] ~Uasinajn,

Here U, is an arbitrary constant, E is Young's modulus, v is the Poisson coefficient, We subtract
(1.2) from the equations describing the problem under consideration. The boundary conditions of the dif-

ference problem may be derived from Egs, (1,1) and (1.3):
0= 0 fr J8]=1"n O0Lr<oo (1.4)
Ggg = U for {1=a/n, O r< !
b= (dlnr—B) for O= *xzx/n. F<r < oe

~

Q ==2xsina,'n \ Suedr .
1
2., Let us consider the solution of the problem (1.4). The following expression was obtained earlier

[2] for the transform ¥ after applying a Mellin transformation to the biharmonic equation for the Airy
function ¥, allowing for the symmetry of the problem and the condition (1.1):
2.1)

F 0.0 =\ ¥ 0% = F (0,9 ¥ (s)
[}
L s=Dheos[s— 18]

- - cos [(s -~ 1) 8]
FO.8) = e [ =D A/ }

T s [(5 =~ D a/a)

We then obtain the following expressions for ogg and U at the boundaries of the wedge when 6 =7/n
(2.2)

50 () = 5 (18 =B ()40
0

E7 (s) = EK e (1) e = (s)

0
sin (2e/n) — ssin2x/n ][

. 2
k(s)= 4 | sin[(s -~ ) a/n)sin[{s = 1) a/n]

Let us introduce the functions 7 ]
1 o
F4(8) == S Sge (MY Pidr,  5a(s) = \ S (1) rdr (2.3)
i’ :
s} = S c(r) e, el (8) = \ e(ryrfldr
o 1
It follows from conditions (2.2) and (2.,3) that
() =A & —~B .. (2.4)

O.. (\) = {,
If we assume that v(r) ~r€as r—0, where &€ >0 [the constant part of v(r) may be eliminated by an ap-
propriate choice of U] and 099~r‘1 as r— », then in relation to the functions o_ and v, we may conclude
[5] that o_(s) is a regular function of the complex variable s for Re s <0, while v+(s) is regular for Re s >—¢,
Eliminating ¥ (s) from (2.2), we obtain the following functional equation for v .(s), o_(s)
' (2.5)

o_ = —Rh(\NE (r4 + ) .

If we factorize the function k(s) as in [2], we may express k(s) in the form

k()= K.K. (2.6)
2 —e F.
s2F . Ko ; (’_i)s

K“*:-.l—:—; .
2a/n —+sin 2/ n
o(n) = Lsin?x/n
= (t—sja ) (1 —sia,)
Fo(s)=F_(s)= H [T —s/(nn+ D] [L—s/(mn— [N

m=1
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Here apy are the roots of the equation sin (2s7/n)+s[sin(27/n)]=0 in the first square of the plane s.
The function K, is regular for Re s >~1, K_ is regular for Re s <1 and has no zeros in this region, Let us
divide Eq. (2.5) by K_:

o/ K_= ——K+EZ‘+—K+EL_. (2‘7)
The left-hand side of this equation is regular for Re s <0, the right-hand side is regular for Re s >~¢,
Let us see how these functions behave at infinity:

Ou ~|s| 7 K_~js|™* a s— — co

a
Ty o~ 8 T2 K, ~ sz as s — 4 oo

(for o. and v, the order of magnitude at infinity is determined by the known behavior of the sclution at the
tip of the crack for r=1,) It follows from Liouville's theorem and Eq, (2.4) that

o/ KE_=0(0)/ K- (0)=Q/2c(m)sinn/n. (2.8}

Equations (2.8), (2.6), and (2.2) determine the form of the functions o_ and ¥{s); we may express all
the parameters of the stressed state in the form of contour integrals of the reciprocal Mellin transforma-
tion in terms of these.

Let us find the singularity coefficient for the stresseis at the tip of the crack, According to [5], we
find that if ogg ~N(r-1)1/2 as r—~1+0, then 0‘_~NI‘(1/2) sl asgg = —w, Thus, in order tofind N it is
sufficient to determine the behavior of 0. as s =~ — «. If we use the equation [2]

PRI A+t n—s/ )T —1/n—s/n)
e —s/)fd+1/n)T—1/n)

F_(s)= D{s)

= (1——s/am)(l-s/7{m}
D(S):n]f-[l [1—s/(mn —n/4)}

we find that as s—=—

. Q T23/4) Do (n) 1
S~ Zsinm/n TS /)T (1 —1/n) —sn

H Tda+1/nmT1—1/n
Du(n):slingop(s) :1/ 26’1'1) e /[‘2)(3/4() = *

For a system of n cracks of length I we obtain
N=Q@n)"* [(2a/n + sin2n/ n)] ™, (2.9)

For n=2 this expression coincides with the coefficient of the stress-field singularity in the case of a
plane crack of length 21 stretched by concentrated forces Q applied to the middle points of its borders and
acting along the normal to the crack {6]. Using Eq. (2.9) we obtain the following expression for the stress-
field singularity coefficient at the tip of the crack in the case of a system of n radial free cracks of length
I emerging into a cavity of radius r loaded with a pressure p:

N = proV Ean @/ n + sin 23 ) 007, (. {(2.10)
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